
Using a graph database for
resource authorization
Roar Audun Myrset and Sebastian Verheughe

Telenor

2nd Workshop on Graph-based Technologies and Applications

«Graph-TA»
Barcelona, Spain
 February 2014

Customer model

Customer

Customer

Account

Subscription(cell phone)

The problem : Which resources does a
user have access to?

The problem domain

The resource authorization logic was written in SQL
and had been running for several years.
But we started to get into trouble:
• Calculation of resources for a large user could

take up to twenty minutes
• To get acceptable response times we needed to

introduce caching which again caused:
– Inability to scale for more users with access to a large

set of resources
– Data not being up to date

• Complicated to understand the SQL code

Solution part 1

• Question: Re-implement the existing
SQL/relational database or make something
new?

– Decision was made to use a graph database based
on gut feeling and a Proof of Concept

– The graph database chosen was Neo4J

Solution part 2

• ~30 million nodes/vertices in the graph

– ~3 million user nodes

– ~27 million resource nodes

• ~40 million relationships/edges

• At runtime the database is loaded into
memory (in-heap) and is using about 20GB.

Results

• We don’t need to cache anymore hence we are able to scale with
regards to the number of users

• The graph query logic is easier to read than the old SQL logic.
• Users are getting acceptable response times:

•

Reasons to meet us at the poster

• Experience with using Neo4J

• Performance optimizations done

• All other stuff we didn’t get to tell you

