Using a graph database for
resource authorization

Roar Audun Myrset and Sebastian Verheughe

fc telenor

2nd Workshop on Graph-based Technologies and Applications
«Graph-TA»
Barcelona, Spain
February 2014



Customer model
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The problem : Which resources does a

user have access to?
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The problem domain

The resource authorization logic was written in SQL
and had been running for several years.

But we started to get into trouble:

* Calculation of resources for a large user could
take up to twenty minutes

* To get acceptable response times we needed to
introduce caching which again caused:

— Inability to scale for more users with access to a large
set of resources

— Data not being up to date
* Complicated to understand the SQL code



Solution part 1

* Question: Re-implement the existing
SQL/relational database or make something
new?

— Decision was made to use a graph database based
on gut feeling and a Proof of Concept

— The graph database chosen was Neo4)



Solution part 2

~30 million nodes/vertices in the graph
— ~3 million user nodes
— ~27 million resource nodes

~40 million relationships/edges

At runtime the database is loaded into
memory (in-heap) and is using about 20GB.



Results

We don’t need to cache anymore hence we are able to scale with
regards to the number of users

The graph query logic is easier to read than the old SQL logic.
Users are getting acceptable response times:

Distribution of response times the last 30 days in production. Total of ~18 million calls
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Reasons to meet us at the poster

* Experience with using Neo4)
* Performance optimizations done
* All other stuff we didn’t get to tell you



