Using a graph database for
resource authorization

Roar Audun Myrset and Sebastian Verheughe

fc telenor

2nd Workshop on Graph-based Technologies and Applications
«Graph-TA»
Barcelona, Spain
February 2014

Customer model

Q Customer

Customer

YYYY' Subscription(cell phone)

The problem : Which resources does a

user have access to?

UserGroup
(SYSTEM)

BlackHeart

USEF,'n_grcu,;

Donald
Sl =False
Cl =False

Louie
Sl =True
Cl=False

Daisy
8l =False
Cl=True

MrRockerduck
Sl =False
Cl=True

DuckburgAdmin

ScroogeMcDuck!
Sl=False

Sl=True

Huey

GyroGearloose

I'vl?l\\da MagicaDeSpell Jake Della Downy
Sl=True Sl =False Sl =True Sl = False Sl =True Sl ="True Sl =False
Cl=true Cl=True Cl=False Cl = False Cl =False Cl=False Cl=False Cl=False Cl=True

I

n

Iy

1

IR

[

| l'l

i

P

[

]

\

.

o

[
[
i \

C| =True

/

‘n - N

| q n wned

I ! P .‘v:i:: Sy Owned
II Paid Owned 1

| a

'\ \

| Paid 1

| i

| |

|

| I

| |

| i

| | \
VW 7 B YA, AV)
Al A2 A3 Ad

59 510 511

A5 AB]
7 T | | T f —
Used Used Used Used Used / Usggj Used Used ‘\
oy] wl KV ey 9w day
51 82 53 34 35 86 87 38

512 513

The problem domain

The resource authorization logic was written in SQL
and had been running for several years.

But we started to get into trouble:

* Calculation of resources for a large user could
take up to twenty minutes

* To get acceptable response times we needed to
introduce caching which again caused:

— Inability to scale for more users with access to a large
set of resources

— Data not being up to date
* Complicated to understand the SQL code

Solution part 1

* Question: Re-implement the existing
SQL/relational database or make something
new?

— Decision was made to use a graph database based
on gut feeling and a Proof of Concept

— The graph database chosen was Neo4)

Solution part 2

~30 million nodes/vertices in the graph
— ~3 million user nodes
— ~27 million resource nodes

~40 million relationships/edges

At runtime the database is loaded into
memory (in-heap) and is using about 20GB.

Results

We don’t need to cache anymore hence we are able to scale with
regards to the number of users

The graph query logic is easier to read than the old SQL logic.
Users are getting acceptable response times:

Distribution of response times the last 30 days in production. Total of ~18 million calls

interval

Number of calls in

~500 millis is 99,9 %
percentile

Full Garbage Collection in JVM causes
these

8192-16384 16384-32768 | 32768-65536

51z2-1024 2048-4056 4036-8132

128-256 1024-2048

256-512

Duration in millisecon: ds

Reasons to meet us at the poster

* Experience with using Neo4)
* Performance optimizations done
* All other stuff we didn’t get to tell you

